Regulation of the mTOR-Rac1 axis in platelet function
نویسندگان
چکیده
Small GTPase proteins regulate cytoskeletal dynamics to orchestrate diverse cellular functions in organismal physiology, development and disease. The Rho GTPase family member Rac1 is central to actin-driven processes in a number of cell types, particularly platelets, where Rac1 serves as an essential mediator of lamellipodia formation and thrombus stability. Despite the importance of Rac1 to platelet function, little is known about how Rac1 activity is regulated in platelets. We recently defined the tyrosine-kinase based signaling cascade that activates mTOR to regulate Rac1 activation downstream of platelet integrin and glycoprotein receptors. We demonstrated a critical role for the mTOR-Rac1 axis in regulating platelet spreading, aggregation and aggregate stability under shear. These studies suggest that in addition to cancer and transplant medicine, intervention of the mTOR system may have implications for hemostatic and thrombotic processes as well as immunotherapies and intravascular stent design.
منابع مشابه
PLATELETS AND THROMBOPOIESIS S6K1 and mTOR regulate Rac1-driven platelet activation and aggregation
Platelet activation and thrombus formation are under the control of signaling systems that integrate cellular homeostasis with cytoskeletal dynamics. Here, we identify a role for the ribosome protein S6 kinase (S6K1) and its upstream regulator mTOR in the control of platelet activation and aggregate formation under shear flow. Platelet engagement of fibrinogen initiated a signaling cascade that...
متن کاملS6K1 and mTOR regulate Rac1-driven platelet activation and aggregation.
Platelet activation and thrombus formation are under the control of signaling systems that integrate cellular homeostasis with cytoskeletal dynamics. Here, we identify a role for the ribosome protein S6 kinase (S6K1) and its upstream regulator mTOR in the control of platelet activation and aggregate formation under shear flow. Platelet engagement of fibrinogen initiated a signaling cascade that...
متن کاملThe preventive effect of atorvastatin on liver fibrosis in the bile duct ligation rats via antioxidant activity and down-regulation of Rac1 and NOX1
Objective(s): Atorvastatin is a cholesterol-lowering agent capable of inhibiting 3-hydroxy-3-methylglutaryl coenzyme A reductase. Recent studies have demonstrated new facets of atorvastatin, such as antioxidant and anti-fibrotic properties. We investigated the effect of atorvastatin on hepatic injury via the measurement of the antioxidant capacity and protein expressio...
متن کاملTHE EFFECTS OF 4 WEEKS HIGH INTENSITY INTERVAL TRAINING ON MAMMALIAN RAPAMYCIN TARGET PROTEIN (MTOR) AND STEROL TRANSCRIPTION FACTOR REGULATORY PROTEIN-1 (SREBP1) PROTEINS CONTENT IN DIABETICS OBESE RATS ADIPOSE TISSUE
Background: Obesity and type 2 diabetes can impair the function of important cellular pathways. Activation of the mTOR pathway results in regulation of the SREBP1 protein for metabolism and regulation of adipose tissue. The aim of this study was to investigate the effect of 4 weeks of high intensity interval training on the content of mTOR and SREBP1 in adipose tissue of type 2 diabetic rats. ...
متن کاملRhoA and Rac1 GTPases Differentially Regulate Agonist-Receptor Mediated Reactive Oxygen Species Generation in Platelets
Agonist induced generation of reactive oxygen species (ROS) by NADPH oxidases (NOX) enhances platelet aggregation and hence the risk of thrombosis. RhoA and Rac1 GTPases are involved in ROS generation by NOX in a variety of cells, but their roles in platelet ROS production remain unclear. In this study we used platelets from RhoA and Rac1 conditional knockout mice as well as human platelets tre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2012